6[12C20].-J. B. Muskat \& K. S. Williams, Cyclotomy of Order Twelve Over $\operatorname{GF}\left(p^{2}\right), p^{2} \equiv 1(\bmod 12)$, One page of text and nine pages of tables, deposited in the UMT file, 1986.

Let $e \geqslant 2$ and $l \geqslant 1$ be integers and let p be an odd prime such that e divides $p^{l}-1$. We set $q=p^{l}$ and define the positive integer f by $q=e f+1$. The finite field with q elements is denoted by $\operatorname{GF}(q)$. We fix once and for all a generator γ of the multiplicative group $\operatorname{GF}(q)^{*}=\operatorname{GF}(q)-\{0\}$. Further we set $g=\gamma^{1+p+\cdots+p^{\prime-1}}$, so that g is a primitive root modulo p. For $\alpha \in \mathrm{GF}(q)^{*}$ the index of α with respect to γ is the unique integer n such that $\alpha=\gamma^{n}(0 \leqslant n \leqslant q-2)$ and is denoted by ind $_{\gamma} \alpha$.

The number of solutions $\alpha \in \mathrm{GF}(q)^{+}=\mathrm{GF}(q)^{*}-\{1\}$ of the pair of congruences

$$
\left\{\begin{array}{l}
\operatorname{ind}_{\gamma}(\alpha-1) \equiv h(\bmod e) \tag{1.1}\\
\operatorname{ind}_{\gamma} \alpha \equiv k(\bmod e)
\end{array}\right.
$$

is denoted by $(h, k)_{e}$, where h and k are integers such that $0 \leqslant h \leqslant e-1$, $0 \leqslant k \leqslant e-1$. The numbers $(h, k)_{e}$ are called the cyclotomic numbers of order e over $\operatorname{GF}(q)$ and they depend on p, l, e, and γ. The cyclotomic numbers have the following properties:

$$
\begin{align*}
& (h, k)_{e}=(e-h, k-h)_{e}, \tag{1.2}\\
& (h, k)_{e}= \begin{cases}(k, h)_{e} & \text { if } f \text { is even, } \\
\left(k+\frac{1}{2} e, h+\frac{1}{2} e\right)_{e} & \text { if } f \text { is odd, }\end{cases} \tag{1.3}\\
& (h, k)_{e}=(p h, p k)_{e} . \tag{1.4}
\end{align*}
$$

It is a central problem in the theory of cyclotomy to obtain explicit formulae for these numbers. This has been done for a number of values of $e \leqslant 24$ and $l \geqslant 1$. The determination of the cyclotomic numbers of order twelve over $\operatorname{GF}(p)$, where $p \equiv 1$ $(\bmod 12)$, was carried out by Whiteman in [5] (the case $e=12, l=1$). Whiteman gives the cyclotomic numbers of order twelve over $\mathrm{GF}(p)$ as linear combinations of $p, 1, a, b, x$, and y, where

$$
\begin{equation*}
p=a^{2}+b^{2}=x^{2}+3 y^{2}, \quad a \equiv 1(\bmod 4), \quad x \equiv 1(\bmod 6) . \tag{1.5}
\end{equation*}
$$

Using the method described in [3] and the evaluation of the Eisenstein sums

$$
\begin{equation*}
E_{e}\left(\beta^{m}\right)=\sum_{c=0}^{p-1} \beta^{m \operatorname{ind}_{\gamma}\left(1+c \gamma^{(p+1) / 2}\right)} \quad(\beta=\exp (2 \pi i / e)) \tag{1.6}
\end{equation*}
$$

of order e over $\operatorname{GF}\left(p^{2}\right)$, when $e=12$, given by Berndt and Evans [2], the authors have determined the cyclotomic numbers of order twelve over $\operatorname{GF}\left(p^{2}\right)$. Analogous to the results of Whiteman, we found that the cyclotomic numbers of order twelve over $\operatorname{GF}\left(p^{2}\right)$ can be expressed as linear combinations of $p^{2}, p, 1, a^{2}-b^{2}, 2 a b$, $x^{2}-3 y^{2}, 2 x y$, where

$$
\begin{equation*}
p^{2}=\left(a^{2}-b^{2}\right)^{2}+(2 a b)^{2}=\left(x^{2}-3 y^{2}\right)^{2}+3(2 x y)^{2} . \tag{1.7}
\end{equation*}
$$

The complete set of tables is given in the UMT file as well as in [4].

A summary of the results is as follows.
Since $p^{2} \equiv 1(\bmod 12)$ we have $p \equiv 1,5,7$, or $11(\bmod 12)$. In the case $p \equiv 11$ $(\bmod 12)$ the phenomenon of uniform cyclotomy occurs (see [1, Definition 1]) and there are just three different cyclotomic numbers [1, Theorem 1], namely

$$
\left\{\begin{array}{l}
144(0,0)_{12}=p^{2}+110 p-35, \tag{2.1}\\
144(0, i)_{12}=144(i, 0)_{12}=144(i, i)_{12}=p^{2}-10 p-11, \quad i \neq 0 \\
144(i, j)_{12}=p^{2}+2 p+1, \quad 0 \neq i \neq j \neq 0 .
\end{array}\right.
$$

Here i and j denote integers with $0 \leqslant i, j \leqslant 11$.
For $p \equiv 1(\bmod 12)$ it is only necessary to evaluate thirty-one of the $e^{2}=144$ cyclotomic numbers, as the others can be deduced from them using (1.2) and (1.3). It is shown [4] that the thirty-one cyclotomic numbers $144(i, j)_{12}$ are integral linear combinations of $p^{2}, 1, a^{2}-b^{2}, 2 a b, x^{2}-3 y^{2}, 2 x y$, where the integers a, b, x, y are defined by

$$
\begin{equation*}
E_{12}\left(\beta^{3}\right)=a+b i, \quad E_{12}\left(\beta^{2}\right)=x+y i \sqrt{3}, \quad \beta=\exp (2 \pi i / 12) \tag{2.2}
\end{equation*}
$$

and satisfy

$$
\begin{gather*}
p=a^{2}+b^{2}, \quad a \equiv(-1)^{k}(\bmod 4), \quad p=12 k+1, \tag{2.3}\\
p=x^{2}+3 y^{2}, \quad x \equiv 1(\bmod 3) \tag{2.4}
\end{gather*}
$$

There are six sets of formulae depending upon ind $2(\bmod 3)$ and which of a or b is divisible by 3 .

For $p \equiv 5(\bmod 12)$ it is only necessary to evaluate twenty of the $e^{2}=144$ cyclotomic numbers, as the others can be deduced from them using (1.2), (1.3), and (1.4). It is shown [4] that each of the twenty numbers $144(i, j)_{12}$ can be expressed as an integral linear combination of $p^{2}, p, 1, a^{2}-b^{2}, 2 a b$, where the integers a, b are defined by

$$
\begin{equation*}
E_{12}\left(\beta^{3}\right)=a+b i, \quad \beta=\exp (2 \pi i / 12) \tag{2.5}
\end{equation*}
$$

and satisfy

$$
\begin{equation*}
p=a^{2}+b^{2}, \quad a \equiv(-1)^{k+1}(\bmod 4), \quad p=12 k+5 . \tag{2.6}
\end{equation*}
$$

There are two sets of formulae depending on whether $a \equiv b(\bmod 3)$ or $a \equiv-b$ $(\bmod 3)$.

For $p \equiv 7(\bmod 12)$ it is only necessary to evaluate twenty-two of the $e^{2}=144$ cyclotomic numbers as the others can be deduced from them using (1.2), (1.3), and (1.4). It is shown [4] that each of the twenty-two numbers $144(i, j)_{12}$ can be expressed as a linear combination of $p^{2}, p, 1, x^{2}-3 y^{2}, 2 x y$, where the integers x, y are defined by

$$
\begin{equation*}
E_{12}\left(\beta^{2}\right)=x+y i \sqrt{3} \tag{2.7}
\end{equation*}
$$

and satisfy

$$
\begin{equation*}
p=x^{2}+3 y^{2}, \quad x \equiv-1(\bmod 3) \tag{2.8}
\end{equation*}
$$

There are three sets of formulae depending upon the value of ind ${ }_{g} 2(\bmod 3)$.
These formulae can be used to obtain new residuacity criteria. For example, the following theorem is proved in [4].

Theorem. Let $p \equiv 5(\bmod 12)$ be a prime. Let γ be a generator of $\operatorname{GF}\left(p^{2}\right)^{*}$. Set $g=\gamma^{1+p}$ so that g is a primitive root $(\bmod p)$. Then, with a and b as defined in (2.5), we have

$$
\operatorname{ind}_{g}(-3) \equiv\left\{\begin{array}{lll}
1 & (\bmod 4) & \text { if } a \equiv-b(\bmod 3) \tag{2.9}\\
3 & (\bmod 4) & \text { if } a \equiv b(\bmod 3)
\end{array}\right.
$$

Authors' Summary

Department of Mathematics and Computer Sciences
Bar-Ilan University
Ramat-Gan, Israel
Department of Mathematics and Statistics
Carleton University
Ottawa, Ontario, Canada K1S 5B6

1. L. D. Baumert, W. H. Mills \& R. L. Ward, "Uniform cyclotomy," J. Number Theory, v. 14, 1982, pp. 67-82.
2. B. C. Berndt \& R. J. Evans, "Sums of Gauss, Eisenstein, Jacobi, Jacobsthal, and Brewer," Illinois J. Math., v. 23, 1979, pp. 374-437.
3. C. Friesen, J. B. Muskat, B. K. Spearman \& K. S. Williams, "Cyclotomy of order 15 over $\operatorname{GF}\left(p^{2}\right), p \equiv 4,11(\bmod 15), "$ Internat. J. Math. Math. Sci. (To appear.)
4. J. B. Muskat \& K. S. Williams, Cyclotomy of Order Twelve Over $\operatorname{GF}\left(p^{2}\right), p^{2} \equiv 1(\bmod 12)$, Carleton Mathematical Series No. 217, January 1986, 73 pp.
5. A. L. Whiteman, " The cyclotomic numbers of order twelve," Acta Arith., v. 6, 1960, pp. 53-76.
